If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-80X-75000=0
a = 1; b = -80; c = -75000;
Δ = b2-4ac
Δ = -802-4·1·(-75000)
Δ = 306400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{306400}=\sqrt{400*766}=\sqrt{400}*\sqrt{766}=20\sqrt{766}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-20\sqrt{766}}{2*1}=\frac{80-20\sqrt{766}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+20\sqrt{766}}{2*1}=\frac{80+20\sqrt{766}}{2} $
| 3x=198/7 | | 9p+10=73 | | 5(3x-1)-2(4x+2)=40 | | 1/2x–1.0675=3x–4.145 | | 8x+13=x-6 | | 2+5x=2x+5 | | 1/2x–1.0675=3x–4.145. | | 9x=56x | | x+157=180 | | 22+3x=64 | | 7u^2+2u-2=0 | | x+6(3-3x)=52 | | 2x+25=117 | | 4(n+5)=4n+20 | | -96=-2(5r+8) | | 115+35+3x=180 | | 4(n+5)=20-5n | | -6(-22x-32)=45(23+4x) | | 7x+7(-2x+41)=328 | | 4(n+5)=4n-20 | | 7=8c+9 | | x/2+7=25 | | 9w+4=85 | | -134-29x=-23x+106 | | 4(n+5)=5n+20 | | (.25)^2=1-(6/x) | | x²-9=0 | | -5+10k=75 | | x^2+x=4.5 | | 4a^2-3=57 | | 6(x+2)=49 | | 6.35x+3.13X=22.28 |